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Path-integral study of a two-dimensional Lennard-Jones glass
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The glass transition in a quantum Lennard-Jones mixture is investigated by constant-volume path-integral
simulations. Particles are assumed to be distinguishable, and the strength of quantum effects is varied by
changing\ from zero ~the classical case! to one ~corresponding to a highly quantum-mechanical regime!.
Quantum delocalization and zero point energy drastically reduce the sensitivity of structural and thermody-
namic properties to the glass transition. Nevertheless, the glass transition temperatureTg can be determined by
analyzing the phase space mobility of path-integral centroids. At constant volume, theTg of the simulated
model increases monotonically with increasing\. Low temperature tunneling centers are identified, and the
quantum versus thermal character of each center is analyzed. The relation between these centers and soft
quasilocalized harmonic vibrations is investigated. Periodic minimizations of the potential energy with respect
to the positions of the particles are performed to determine the inherent structure of classical and quantum
glassy samples. The geometries corresponding to these energy minima are found to be qualitatively similar in
all cases. Systematic comparisons for ordered and disordered structures, harmonic and anharmonic dynamics,
classical and quantum systems show that disorder, anharmonicity, and quantum effects are closely interlinked.

DOI: 10.1103/PhysRevE.65.066704 PACS number~s!: 64.70.Pf, 05.30.2d, 66.35.1a, 63.20.Pw
in
th
a

po
fro

a

o
fo

o
e

te

m

te

t
:
tri

D
s
e

te
a
b

tin
th

ion
ere-
the
tem.
mal
ore
d on

n-
e
e
nd

n-
ra-
ion
fea-
th-
in

d of
ured

the

use
the
y in
al
es-
ed
ry
or-

uter
I. INTRODUCTION

Computer simulation nowadays plays an ever increas
role in the investigation of simple glasses, partly because
recent, astonishing surge of computer power has dramatic
expanded the reach of simulation methods, and, more im
tantly, because new ideas and paradigms are emerging
the concerted effort of several computational groups@1,2#. In
recent years the discussion has been focused on two m
topics:~i! the nature of the glass transition@3#; ~ii ! the inves-
tigation of the low-energy excitation typical of glasses@4#,
i.e., the soft quasilocalized modes giving rise to the Bos
peak at;10 K, and the two-level systems responsible
the linear term in the specific heat at;1 K @5#. Atomistic
simulations, in particular, have helped in the identification
the structural features associated with those low-energy
citations: low frequency quasilocalized vibrational sta
have been identified and characterized in several studies@6#,
and their role in the glass transition has been investigated@7#.
In most of these studies, often based on idealized interato
potentials ~Lennard-Jones or repulsive soft spheres!, an
amorphous sample is prepared by quenching a liquid sys
by classical molecular dynamics~MD! or Monte Carlo~MC!
simulation. Two approaches have been used to analyze
dynamical properties of the resulting amorphous system~i!
the computation and diagonalization of the dynamical ma
and~ii ! the analysis of trajectories generated by classical M
at low temperature. Quantum-mechanical effects are ea
accounted for by the first method, and soft quasilocaliz
states can be identified by their low frequency and limi
spatial extension. This approach, however, is limited to h
monic properties, although anharmonic contributions can
partially included by a variant of this method~i.e., the quasi-
harmonic approximation!. On the other hand, classical MD
treats harmonic and anharmonic effects on the same foo
The drawback of this method is that, at low temperature,
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time evolution generated by Newton’s equations of mot
does not correspond to the true system dynamics, and th
fore MD should be considered simply as a way to explore
potential energy landscape visited by the amorphous sys
Tunneling modes can be identified by observing the ther
activated oscillations of the system between two or m
quasidegenerate configurations. In previous studies base
this method, quantum tunneling has been investigateda pos-
teriori, either by a semiclassical WKB analysis of the pote
tial energy profile connecting the minima identified in th
simulation@8,9#, or using phenomenological models for th
double well potential giving rise to the two-level system, a
fitted to simulation results for two-dimensional~2D! @10# and
3D @11# samples.

The self-consistent inclusion of anharmonicity and qua
tum effects in models of amorphous solids at low tempe
ture would provide a more complete and realistic descript
of these systems, and could reveal new and unexpected
tures. As a first step towards this goal, we perform a pa
integral ~PI! simulation of a model Lennard-Jones glass
2D. The particles are assumed to be distinguishable an
equal mass, and the strength of quantum effects is meas
by the value of Planck’s constant\, which is varied from
zero ~the classical limit! to one ~corresponding to a highly
quantum-mechanical regime, as it will be apparent from
results discussed in the following sections@12#!.

We restrict ourselves to two-dimensional systems beca
the results for the quasilocalized tunneling modes and for
system configurations are easier to analyze and to displa
graphical form. In analogy with what is done in classic
MD, we prepare the system in the liquid state, and progr
sively quench it down to very low temperature. As describ
in detail below, most of our computations concern a bina
mixture that is known to remain homogeneous and dis
dered under all annealing cycles achievable by comp
simulation.
©2002 The American Physical Society04-1
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The computational results provide a solid ground to
dress three problems:~i! the characterization of the glas
transition in a quantum-mechanical system;~ii ! the compari-
son of the amorphous structure for classical and quant
mechanical systems evolving under the same Hamilton
~iii ! the identification and characterization of low-energy e
citations.

The identification of the glass transition by MD simul
tions, and the appropriate comparison with experimen
measurements, is still the subject of active investigation e
in the case of classical systems. The standard defini
adopted in experiments~the glass transition is where the vi
cosity coefficient reaches 1013 P) cannot be extended t
computer experiments because the evaluation of such a
viscosity would require exceedingly long simulation tim
@13#. Alternative criteria have been proposed, based on ei
thermodynamic properties~the appearance of broad speci
heat anomalies! or structural properties~the splitting of the
second neighbors’ peak in the radial distribution functio
and the growth of a prepeak in the structure factor!.

In quantum-mechanical simulations, all these criteria lo
~partially or entirely! their ability to identify the glass tran
sition. In the first instance, the imaginary-time formulation
most computational approaches for quantum systems hin
the determination of dynamical properties such as diffus
or viscosity. In addition, quantum delocalization and ze
point energy conceal the typical signatures of the glass t
sition, which otherwise appear in the structural and therm
dynamic properties. Despite these difficulties, it is nevert
less possible to determine the glass transition temperaturTg
of quantum systems by a detailed analysis of the mobility
quantum paths~more precisely, of quantum paths’ centroid!
in phase space. The characteristic regimes of liquidlike m
bility at high temperature, activated discrete jumps at in
mediate temperature, and solidlike glassy behavior at lowT,
are still recognizable in the behavior of quantum syste
although quantitative estimates for the diffusion coefficie
cannot be obtained. This separation of dynamical regim
~that remains unaltered over a wide range of simulation t
scales! provides the most effective approach for identifyin
the glass transition.

For our glasses, although the classical and quant
mechanical trajectories of the particles differ, the underly
potential energy valleys are, to a large extent, equival
This becomes evident when we quench various config
tions, selected from either classical or quantum trajector
and analyze the average structural properties~such as the
radial distribution function or the structure factor! of the
static geometries corresponding to the potential ene
minima @14#. We find that these average structural propert
are practically indistinguishable in all cases, whereas
same functions computed at nonzero temperature du
classical and quantum simulations are, as expected, mark
different.

A similar analysis of potential energy minima is used
identify tunneling centers, and to investigate the interplay
quantum and thermal effects on their dynamics. It is wo
pointing out that the tunneling modes themselves are cha
terized by low excitation energies, and therefore they
06670
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expected to behave classically at all but the lowest temp
tures. However, their interaction with a classical or
quantum-mechanical thermal bath may be different, and
precisely this difference that is investigated in our study.

The interest in this kind of problems, and in our 2D stu
in particular, is enhanced by the experimental preparation
quenched noble gas films on a cold substrate@15#, at tem-
peratures~a fraction of a °K) such that quantum-mechanic
effects are expected to play a significant role.

II. THE MODEL AND THE COMPUTATIONAL METHOD

We study a binary mixture of particles interacting via
Lennard-Jones~LJ! potential

v i , j~r !54e i j F S s i j

r D 12

2S s i j

r D 6G , ~1!

where the indexesi , j refer to the particle species~1 and 2!,
which differ for the LJ diameter only:s2251.5s11, with
s125(s111s22)/2 @16#. All the other parameters~i.e., e i j
and the particle massM ) are the same for the two specie
Reduced units are used throughout the paper by settings11
51, e1151, andM51. This implicitly defines our unit of
time ast5s11AM /e11.

We consider a system ofN5N11N251000 particles,
with number concentrationsx15N1 /N50.8, and x2
5N2 /N50.2. Two-dimensional periodic boundary cond
tions are applied, assuming a square unit cell of sideL. Pre-
vious studies have shown that systems with this Hamilton
and composition do not crystallize during classical M
simulations of ordinary length~see, for instance, Ref.@17#
and Ref.@18#!. All computations are done for systems who
densityr5N/L250.952 is equal to the density of the sy
tems investigated in Ref.@17#. In 2D, the size (N51000) of
our samples enables us to explore the intermediate ra
order ~beyond the third nearest neighbors’ shell! with little
influence of finite size effects, and at the same time it allo
extensive simulations with the PI method.

The path-integral simulation is performed by exploitin
the well known isomorphism of the quantum trace operat
with the phase space integration for a classical system oN
cyclic polymers of lengthP, moving on the potential energ
surface@19–21#,

V~r 1,1 , . . . ,r 1,P ; . . . ;rN,1 , . . . ,rN,P!

5(
i 51

N

(
j 51

P S a~T!~r i,j2r i,j11!
2

1
1

P (
k51

N

v i ,k~ ur i,j2r k,ju!D , ~2!

with r i,P115r i,1 and

a~T!5
PM

2\2b2
. ~3!
4-2



i-
-

u

e
e

it
s
a

rle

o

ith

e
re
t

to
10
ou

r

al

ns
th

op

ec

age
po-
c.

of

-

te
the
p-
n-

cle
and
ro-
sity
e
iff
gth

ng
lled

ri-
g

e

o-

ge

n is
on
tum
the

at

PATH-INTEGRAL STUDY OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 066704
In these equations,P is the order of the path-integral discret
zation in imaginary time,b51/kBT is the inverse tempera
ture in energy units (kB is Boltzmann’s constant!, and\ is
used here as a free parameter measuring the strength of q
tum effects. The set of coordinates$r k, j ,k51,N%, at fixed j,
represents the system configuration at the imaginary timt̃
5 i (b j /P). Following standard naming conventions, this s
of coordinates is also named animaginary-time slice, while
the positionr k, j of particle k at the imaginary-time slicej
identifies abead. We limit ourselves to this so-calledprimi-
tive algorithmbecause of its simplicity, and because, desp
its relatively low efficiency, we could simulate all condition
of interest for our study with an affordable computation
effort.

We sample the phase space of this system by MD@22# in
the microcanonical ensemble by using the velocity Ve
algorithm@23#. The mass of the beads is set toM /P, in such
a way that the total mass of each polymer representing
particle is always equal to one.

The discretization of the path integrals is performed w
the constraint

PM

\2b
572. ~4!

We verify that this choice, which fixes the temperature d
pendence ofP, provides a reasonably well converged rep
sentation of the total energy@24#, while, at the same time, i
is not so large to cause severe ergodicity problems@20#. In
particular, we verify that external perturbations applied
selected degrees of freedom are equilibrated well within4

MD steps, i.e., a time much shorter than the length of
runs~all beyond 33105 steps!. The relatively stiff harmonic
potential in Eq.@2#, however, limits the value of our time
step todt51.231023t. This is the time step used in all ou
simulations, including the classical ones. Each system
simulated at values of temperature in the interval 1<T<12
and corresponding to integerP values.

The quantum-mechanical average total energy is ev
ated as detailed in Ref.@25#. The kinetic energyEK , in par-
ticular, is evaluated using the virial estimator@26,27#,

EK5
3N

2b
1

1

2P

3K (
i 51

N

(
j 51

P ](
k51

N

v i ,k~ ur i,j2r k.ju!

]r i,j
•~r i,p2r k,p!L ,

~5!

which is known to be the least affected by fluctuatio
among all simple estimators that can be derived from
partition function of the system.

The usage of MD to compute quantum-mechanical pr
erties is justified only if the simulation temperatureTMD ,
defined by the average kinetic energy along the MD traj
tory, is close to the temperatureT entering the definition of
the coupling parametera(T) @see Eq.~3!#. In each of our
06670
an-

t

e

l

t

ne

-
-

r

is

u-

e

-

-

runs, the relative difference betweenT and TMD is always
smaller than 1%. However, we noticed that several aver
quantities~such as the quantum-mechanical kinetic and
tential energy, the imaginary-time correlation functions, et!
are very sensitive to even small deviations ofTMD from T.
For this reason, we numerically compute the derivative
each quantum-mechanical average with respect toTMD at
fixed a(T) andP, and correct the simulation results by lin
early extrapolating toTMD5T.

As mentioned in the introduction, in order to discrimina
between harmonic and anharmonic effects, we analyze
vibrational properties of our systems in the harmonic a
proximation. To this aim, local minima of the system pote
tial energy are found by quenched MD@28#. Then, the sec-
ond derivatives of the energy with respect to the parti
positions are computed by a finite differences scheme,
the corresponding dynamical matrix is diagonalized to p
vide vibrational eigenvalues and eigenstates. At the den
of our simulations (r50.952), the particles mainly sampl
the repulsive part of the LJ potential, giving rise to st
vibrational modes that, in turn, greatly enhance the stren
of quantum effects.

The interpretation of our simulation results concerni
anharmonic dynamics is eased by considering the so-ca
centroid molecular dynamics~CMD, introduced in Ref.@29#
and reviewed in Ref.@30#!, although we did not use this
method in our study. In the CMD approach, the basic va
ables are the centroids$Ri

C ,i 51,N% of the paths representin
each particle,

Ri
C5

1

P (
j 51

P

r i,j , ~6!

together with the corresponding conjugate momenta$Qi
C ,i

51,N%. An approximate and yet reliable formulation for th
time evolution of these variables is

Ṙi
C5

Qi
C

M
, ~7!

Q̇i
C5Fi

C , ~8!

whereFi
C is the force on the particlei averaged on all paths

whose centroid is fixed atRi
C . In the CMD framework, the

expression for the diffusion coefficient involves only the p
sition vectors of the centroids,

D5
1

2dN
lim
t→`

1

t (
i 51

N

^uRi
C~ t1t0!2Ri

C~ t0!u2&, ~9!

whered is the dimensionality of the system and the avera
is over different initial timest0. This simple quantum-
classical correspondence is due to the fact that diffusio
related to the zero-frequency limit of dynamical correlati
functions, and behaves classically provided that quan
fluctuations are accounted for in the computation of
forces~see Ref.@30# for more details!. These formal relations
are supported by explicit simulation results showing th
4-3
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P. BALLONE AND B. MONTANARI PHYSICAL REVIEW E 65 066704
classical and quantum systems evolving on the same po
tial energy surface have a quantitatively different but qu
tatively similar diffusion behavior.

One can think of the centroid trajectories generated in
PI-MD simulations as intermediate between those compu
in CMD and the classical ones. On the one hand, since e
bead has massM /P, it is easy to verify that along our tra
jectories the centroid coordinates and momenta satisfy
equations

Ṙi
C5

Qi
C

M
~10!

and

Q̇i
C5

1

P (
j 51

P

(
kÞ i

N
]v i ,k~ ur i,j2r k, j u!

]r i,j
, ~11!

and, therefore, the force driving the evolution ofQ̇i
C in our

simulations is not equal toFi
C .

On the other hand, because the ratio between the ma
the centroids and that of the beads isP@1, the time evolu-
tion of our samples consists of rapid fluctuations in the d
crete paths superimposed to the slow motion of the centro
These rapid fluctuations provide at least part of the fo
averaging implied in the definition of theFi

C’s, although an

exact correspondence betweenQ̇i
C andFi

C is obtained only in
the P→` limit.

This argument, which relies on the same adiabatic p
ciple exploited by other simulation techniques@31#, is used
in Sec. IV to discuss qualitatively the diffusive behavior
our systems in terms of the centroid trajectories given by
PI-MD simulations. In particular, we shall distinguish thr
different regimes:~i! a high temperature range, in which ce
troids move continuously in a liquidlike fashion;~ii ! an in-
termediate regime, in which centroids perform discr
jumps that result in a slow diffusion of the system in pha
space;~iii ! a low temperature range, in which centroids a
localized in space, sometimes oscillating among nearly
generate and spatially contiguous potential energy mini
We emphasize that, even for very large values ofP, the ap-
proximate relation betweenQ̇i

C andFi
C underlying our analy-

sis does not imply that our path-integral dynamics a
proaches the true dynamics, since, in the CMD meth
simulation time is not equivalent to real time. An approx
mate correspondence~correct up to order\2) can be estab-
lished only for harmonic modes, and the rescaling fac
connecting simulation time to real time depends explicitly
the frequency of the mode to which it is applied@30#. For
this reason, no quantitative estimate of the diffusion coe
cient is obtained from our PI-MD simulations.

In order to analyze the interplay of temperature, quant
effects and disorder on the behavior of our system, we st
a sequence of systems of increasing quantum-mecha
character, obtained by progressively switching\ on. In the
units specified above, we consider\251/3, 1/2, and 1
~equivalently, we could think of systems with decreasing p
ticle mass and studied at constant value of\ @32#!. To pro-
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vide a comparison for the quantum-mechanical study,
first perform a classical MD simulation, corresponding
\250, whose results are discussed in the following secti
The results of additional computations done for\251/6 and
1/4 display the same qualitative features of simulations
higher\2, and therefore they are not discussed in detail he
All these values of\2 correspond to highly quantum
mechanical systems, as will be apparent from the results
ported below. An independent measure of the strength
quantum-mechanical effects is provided by the dimensi
less de Boer parameterL5\/sAMe that, for instance for
rare gas atoms, assumes values fromL50.427 for He toL
50.01 for Xe. In our simulations, this parameters var
from L51 for \251 to L50.41 for \251/6. However,
because we use\ as an independent variable and we choo
M, s, ande as basic units, our simulations do not correspo
exactly to any real rare gas system at the physical value o\.

III. CLASSICAL SIMULATION

Our simulations for the classical case are similar to th
reported in Ref.@17#, and consist of a MD quench from th
fluid to the glass phase. Our equilibration and statistics r
are shorter than those of Ref.@17#, for consistency with the
quantum-mechanical computations, which are computat
ally more expensive.

A liquid sample is equilibrated atT56 during 23106

time steps~corresponding to 2400t), statistics is accumu-
lated over a second run of equal length and then the sys
kinetic energy is discontinuously reduced by an amount c
responding toDT50.25. A similar equilibration/quench se
quence is repeated several times, until the system reachT
50.5.

Inspection of snapshots for the low temperature struct
shows that the system is in a clearly recognizable microc
talline state, with the majority component~type 1 particles!
forming crystallized grains delimited by elongated islands
type 2 particles~see Fig. 1!. Disorder arises at the boundar
of the two components and disrupts the long range tran
tional and orientational order.

The internal energyU ~averaged over the statistics runs
2400t) is an almost linear function ofT. To emphasize non-
linear contributions, we fit the low temperature region
U(T) (T,1.5) with a linear function@Ulin(T)5a1bT#,
and we report the differenceU(T)2Ulin(T) in Fig. 2~a!.
The potential energy contributionCv

U to the constant volume
specific heat is computed by projectingU(T) on orthogonal
polynomials, and then differentiating the polynomial fit wi
respect toT. The results are shown in Fig. 2~b!. Both U(T)
2Ulin(T) and Cv

U(T) display a broad anomaly in the tem
perature range 2,T,4. The analysis of MD trajectories a
several temperatures allows us to relate this anomaly to
heat release due to the formation of crystalline islands
type 1 particles. In other words, the transition displayed
the model has a weak first order character, due to the pa
freezing of type 1 particles, limited by the presence of t
minority ~type 2! particles. In this respect, the results f
U(T) and forCv

U(T) are somewhat different from the stan
4-4
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PATH-INTEGRAL STUDY OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 066704
dard picture of the glass transition, in which the specific h
changes abruptly but continuously from a low value bel
Tg to a high value aboveTg ~see, for instance, Fig. 1 in Re
@1#!.

The diffusion coefficient, as a function ofT, computed in
our simulations agrees well with the one reported in R
@17#, thus confirming that our shorter runs are nonethel
sufficient to describe the system behavior at a satisfac
level of accuracy. The analysis of trajectories shows that
expected, the smaller particles~type 1! diffuse systematically
faster than the larger ones. The qualitative behavior
ur i(t)2r i(0)u2 ~where i is a generic particle in the system!,
however, is similar for the two species. ForT.3, for in-
stance,ur i(t)2r i(0)u2 displays a smooth and nearly mon
tonic dependence upon time, whereas for 2<T<3 diffusion
takes place by discontinuous, thermally activated jum
During our standard runs~extending over 2400t) no diffu-
sion is detected for either species forT<1.75. Longer runs
(;12 000t) at T51.5 revealed a handful of localized jump
that, however, do not appear to give rise to connected tra
tories extending over long distances. These observation
low us to locate the glass transition temperature atTg52.
This estimate ofTg depends on the time scale of our M
observationsand could, in principle, change slightly toward
lower temperatures by considering much longer MD ru
However, we verified that the dependence ofTg on the ob-
servation time scale is relatively weak. For instance, quen
ing the system at twice the cooling rate does not change
results forU(T) significantly for both the lowT structure
and the temperature dependence of the diffusion coeffici
thus leaving our estimate forTg also unchanged.

Our identification ofTg is supported by the analysis of th
radial distribution function and structure factor. The rad

FIG. 1. Typical low temperature configuration found in the cla
sical simulation. Gray and black circles represent the particle
type 1 and 2, respectively.
06670
t

f.
s

ry
s

f

s.

c-
al-

.

h-
he

t,

l

distribution function, for instance, progressively develops
typical features often associated with amorphous system~a
split second peak and a succession of less well defined
cillations at intermediate distances! over the range 2<T<3.
These features are only slightly enhanced by decreasing
temperature toT51.75, and remain nearly unchanged up
quenching to lower temperatures.

As a further comparison for our PI results, we carry o
classical simulations for anaveragemonocomponent system
with the same number of particlesN, and with a LJ diameter
s defined by

Ns25N1s1
21N2s2

2 .

This choice fixes the area covered by the particles of
monocomponent system to be equal to that of the bin
mixture @33#. On cooling this system from highT we ob-
serve, as expected, a clear first order crystallization transi
at T59.3. The large difference between this temperature
Tg of the two-component system is a measure of the dra
disruption of long range order and lowT mobility, due to the
size asymmetry between type 1 and type 2 particles.

In order to further analyze the effects of disorder we fi
perform a careful optimization of the lowT structure of both
the mixture and theaverage monocomponent system b
quenched MD@28#, so as to minimize the potential energ
Subsequently, we determine the harmonic vibrational pr
erties via the method briefly described in Sec. II. The co
parison of the results for the mixture and the crystalli
monocomponent system shows that, as expected, the d

-
of

FIG. 2. Thermodynamic properties of the classical (\50)
model.~a! Average potential energy per particleU as a function of
temperatureT. A linear term has been subtracted to emphasize n
linear contributions.~b! Potential energy contribution to the con
stant volume specific heat as a function ofT.
4-5
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P. BALLONE AND B. MONTANARI PHYSICAL REVIEW E 65 066704
dered mixture displays an excess density of states at
frequency, and a long tail at high energy~see Fig. 3!. The
participation ratiopr, which measures the number of pa
ticles involved in each of the harmonic modes@34#, shows
that this high energy tail is due to highly localized mod
~see the inset of Fig. 3!. Furthermore, a few of the low en
ergy modes are localized (pr,0.2) @35#. The analysis of the
corresponding eigenvectors shows that these modes con
compact clusters of particles at the interface between typ
grains and type 2 particles. For these modes, only the
ticles of type 1 move significantly. The relation betwe
these localized soft modes and quantum-mechanical tun
ing centers will be discussed in Sec. VII.

IV. THE GLASS TRANSITION IN THE
QUANTUM-MECHANICAL MODEL

The identification of the glass transition for the quantu
mechanical model represents a major challenge for ou
simulations since, as\ increases, thermodynamic, structur
and dynamical properties become either too insensitive tT,
or too difficult to compute quantitatively, hence making t
determination ofTg far more problematic than in the class
cal case.

The most effective criterion that we found for our inve
tigation is based on the analysis of the diffusive behavior
the particle centroids, and relies on the approxim
classical-quantum correspondence discussed in Sec. II.
cause of computational convenience, we do not discuss
diffusion coefficient directly, instead we use a closely rela
quantity, called the Lindemann index, defined as

FIG. 3. Vibrational density of states from harmonic analysis
the classical case. Full line, two component glassy mixture; das
line, crystalline monocomponent system with same packing as
mixture ~see Sec. III!. Inset: participation ratiopr for each har-
monic mode~small values ofpr identify localized modes!.
06670
w

ern
1
r-

el-

-
PI
,

f
e
e-

he
d

d5
1

Np
(
i , j

A^Ri j
2 &2^Ri j &

2

^Ri j &
, ~12!

whereRi j is the distance between the centroids for partic
i andj, andNp is the number of pairs included in the sum.
our computations, we restrict the sum to pairs of type 1 p
ticles that, at the time origin of each trajectory, are within
cutoff distance of 1.5s11. Previous studies used the Linde
mann index to locate phase boundaries in problematic ca
including finite@36# and quantum@37# systems. This index is
well defined only when diffusion is strictly zero, and in th
case it assumes a value~of the order of a few percent! that
depends onT and\ @38#.

As soon as the diffusion sets in, the average distance
tween pairs of particles is no longer well defined, and
value ofd depends on the time span over which averages
computed. We exploit this qualitative difference in the tim
dependence ofd to magnify the effect of diffusion, and to
analyze the mobility of our systems in phase space. In p
ticular, we define a time-dependent version of the Lindema
index as

d~ t !5
1

Np
(
i , j

A^Ri j
2 & t2^Ri j & t

2

^Ri j & t
, ~13!

where the variablet labeling ^Ri j
2 & t and ^Ri j & t means that

these averages are estimated over trajectories of lengtht. A
plot of d(t) for different values ofT and \ reveals three
different behaviors~a representative example for\251 is
shown in Fig. 4!, analogous to those discussed in Sec. II a

r
ed
e

FIG. 4. Time-dependent Lindemann indexd as a function of
averaging timet for three temperatures and\251.
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PATH-INTEGRAL STUDY OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 066704
already observed in the classical simulations. At low te
perature, where the system is solidlike,d(t) converges
quickly to its equilibrium value. At high temperatured(t)
grows steadily in time, with an apparent tendency to satu
to a limit close to 1/2. We also observe an intermediate ra
of temperatures in whichd(t) grows slowly by nearly dis-
continuous steps due to the jumplike motion of single p
ticles or small clusters. We identify the first regime with
solidlike ~glass! phase, and the other two with the flu
phase, discriminating further, on the basis of the diffus
mechanism, between a free flowing liquid at highT and a
highly viscous liquid at intermediateT @39#. The boundaries
between the different regimes can be easily located by c
puting the difference ofd(t) at two timest1 andt2, selected
in such a way that att1 the indexd has already settled to it
equilibrium value in the solidlike phase, whilet2 is signifi-
cantly larger thant1 ~we choose, for instance,t15120 and
t25240). By comparison with the fulld(t) curves, we then
verify that d(t2)2d(t1) is zero, to within the error ba
(;431024), in the solidlike phase, small but unambig
ously greater than zero (331023<d(t2)2d(t1)<1022) in
the intermediate region, and fairly large (>1022) in the liq-
uidlike phase.

Since our analysis is based on the time dependence od,
we have to rely on the approximate description of centr
mobility given by our MD simulations. However, the pictu
just described remains unchanged and unambiguous ov
wide range of choices fort1 and t2 and, therefore, the con
clusions do not depend crucially on the precise corresp
dence between simulation time and real time. In other wo
the three different regimes can be interpreted in terms of
connectivity of the potential energy landscape as seen
particles at the typical energy set by the choice ofT and\:
the system is locked into a single potential energy valley
the solidlike phase, it can migrate between valleys via a
vated jumps in an intermediate phase, and it can move c
tinuously in the equilibrium liquid phase.

The results for\250, 1/3, 1/2, and 1 are displayed i
Fig. 5. It is apparent that mobility decreases with increas
\2, rising our estimate forTg from Tg52 for the classical
case (\250), to Tg52.25, 2.66, and 3.25 for\251/3, 1/2,

FIG. 5. Long time variation of the Lindemann indexd ~see text!
as a function ofT. Filled circles, classical simulation (\250);
empty squares,\251/3; filled squares,\251/2; empty circles,\2

51. The lines only provide a guide to the eye.
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and 1, respectively. The determination of these temperat
is supported by detailed analysis of trajectories and ofd(t).
Nonetheless, these values ofTg should be considered only a
approximate, because of the several simplifications and
sumptions made in connecting MD trajectories to real ti
diffusion. Moreover, we estimate the contribution to the u
certainty onTg , due to statistical errors and discrete sa
pling of the temperatures around the glass point, to beDTg
;0.1

Similar results, but with larger uncertainties@40#, are ob-
tained by computing the mean square displacement^uRC(t)
2RC(0)u2& for centroids.

We emphasize that the observed increase ofTg with in-
creasing\ depends on the anharmonic part of the mo
potential used in the present simulations, and there is
reason to expect that it is a general result. Moreover,
choice of theNVTensemble for our simulations implies tha
by changing\, we are comparing systems at different valu
of pressure, which presumably increase with increasing\
because of the enhancement of the zero point motion. T
observation, together with the high sensitivity ofTg to pres-
sure, suggests that performing the simulation in theNPTen-
semble might provide qualitatively different results.

V. THERMAL PROPERTIES OF THE
QUANTUM-MECHANICAL MODEL

As already anticipated, thermodynamic properties do
provide a sensitive probe of the glass transition for
quantum-mechanical systems considered in our simulati
This can be seen in Fig. 6, where the average total energy
particleE is reported as a function ofT. The corresponding
specific heat, computed by differentiating an orthogo
polynomial interpolation forE(T), is shown in Fig. 7. A

FIG. 6. Average total energy per particleE as a function of
temperature. Filled circles,\251; empty circles,\251/2; filled
squares,\251/3; empty squares, classical simulation\250.
4-7
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P. BALLONE AND B. MONTANARI PHYSICAL REVIEW E 65 066704
careful analysis of these curves, even guided by the dete
nation ofTg obtained in Sec. IV, does not allow us to identi
any anomaly that could be clearly attributed to the gl
transition. Only a separate analysis of the kinetic (Cv

K) and
potential energy (Cv

U) contributions to the constant volum
specific heatCv highlights a broad feature that could be r
lated to the glass transition. In the classical caseCv

K(T) is
constant and the differenceCv

U(T)2Cv
K(T) assumes exactly

the same shape asCv of Fig. 2~b!. In the quantum case, as i
the classical limit, this difference displays a broad peak~see
Fig. 8! that could be considered analogous to the spec
heat anomaly in Fig. 2~b!. The peak moves continuously an
monotonically towards higher temperatures with increas
\2, following the same qualitative trend asTg . Provided that
we disregard the secondary peaks ofCv

U(T)2Cv
K(T) for T

<2, probably due to enhanced numerical noise in the fi
becomes clear that the lowT edge of the major peak corre
sponds well to our estimates ofTg based on the Lindeman

FIG. 7. Specific heat as a function of temperature for
quantum-mechanical systems. Full line,\251; dashed line,\2

51/2; dashed-dotted line,\251/3.

FIG. 8. Difference between the potential and the kinetic con
butions to the constant volume specific heat as a function of t
perature. Full line,\251; dashed line,\251/2; dashed-dotted line
\251/3; dotted line,\250 ~classical limit!.
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ratio. The sensitivity ofCv
U(T)2Cv

K(T) to Tg may be under-
stood in terms of the particles localization corresponding
the glass transition, which causes a slight increase of
kinetic energy, and it occurs only when this effect is ov
compensated by a corresponding drop in the poten
energy.

To investigate the relation of disorder, anharmonicity a
thermodynamic properties, we select approximately 50 c
figurations, at random, from the quantum-mechanical tra
tories at T,Tg , we minimize their potential energy with
respect to the particle coordinates, and compute harm
vibrational frequencies and eigenvectors. The structural
dynamical features characterizing the so obtained minima
discussed in the following sections, whereas here we fo
on thermodynamic properties computed within the harmo
approximation. Although the minima are~at least slightly!
different from each other from the structural point of vie
they provide similar results for the thermodynamic prop
ties, and therefore we choose to discuss the data concer
a single minimum for each value of\2, without averaging
over different structures. Both the total energy and the s
cific heat computed in the harmonic approximation diff
significantly from their PI counterparts, hence indicating t
presence of strong anharmonic effects for these system
particular, for\251/3, 1/2, and 1, the total energy calculate
within the harmonic approximation is significantly larg
than the PI results over the entire temperature range cov
by our simulations. The harmonic approximation overes
mates the PI data also forCv at low and highT, while the
ordering is reversed at intermediate temperatures~see Fig. 9!.
The discrepancy at lowT, in particular, could highlight an
important link between quantum effects and anharmonic
Zero point motion rises the energy of the particles well abo
the potential energy minimum, hence enhancing the effec
anharmonic terms already at lowT. For our potential, this

e

-
-

FIG. 9. Specific heat as a function of temperature, compa
with its harmonic part, for two representative quantum syste
Full line, path-integral results for\251; dotted line, harmonic ap-
proximation for \251; dashed line, path-integral results for\2

51/3; dashed-dotted line, harmonic approximation for\251/3.
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PATH-INTEGRAL STUDY OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 066704
apparently reduces the spectral weight of low-energy exc
tions, thus reducing the low temperature specific heat.
observed effect could also be interpreted in terms of the~ex-
pected! pressure increase with increasing\, which is due to
anharmonic effects. For instance, the bulk modulus of a
systems is known to increase sharply with increasing p
sure @27# and this, in turn, rises the energy of the acous
modes responsible for the low temperature specific heat

The expected close relation between anharmonicity
disorder is demonstrated by a similar comparison of the s
cific heat for the monocomponent system described in S
III, which crystallizes during our quenches even in t
quantum-mechanical cases. For these systems, the harm
and PI estimates of the specific heat agree very well ov
wide range of temperatures, and a Debye interpolation
the 2D phonons, resulting in

Cv~T!54kBS T

QD
D 2E

0

QD /T x3ex

~ex21!2
dx, ~14!

whereQD is the Debye temperature, provides a very good
of both for the values of\2 considered in our study.

For the two-component case, the Debye interpolation p
vides a far less accurate fit of the PI data. In all cases,
cause of the rather extreme choice of the values of\2, the
best fit of the simulation data leads to very high values ofQD
(QD;30 at \251/3, andQD;50 at \251 for the binary
mixture, and the corresponding values for the monocom
nent system are;10% higher!. The increase ofQD with
increasing\, once again, is probably related to the increas
pressure due to anharmonicity and enhanced zero point
tion, which stiffen acoustic waves in the system.

VI. STRUCTURAL PROPERTIES

For \251/3, 1/2, and 1, quantum delocalization broade
and smooths significantly the first three peaks of the ra
distribution functiong(r ) at all temperaturesT<6. As a re-
sult, the characteristic features ing(r ) ~split second peak, a
shoulder in the first peak, etc.! seen in the classical simula
tion at low T, and often associated with the glass transiti
are lost for the quantum systems. Moreover, as expected
already moderate temperature dependence of the glassyg(r )
is further reduced by the zero point motion, which mak
g(r ) nearly independent ofT and liquidlike over an extende
range of conditions. Both effects contribute to render
glass transition practically undetectable on the basis of st
tural properties alone, at least for the choice of parame
used in our simulations. These results are illustrated in
10, which shows the radial distribution functiong11(r ) for
type 1 particles@41#, computed atT52 andT56, for the
classical case (\250) and for two quantum samples (\2

51/3 and\251). The qualitative features apparent in th
figure are reflected in similar trends for the structure fac
S(k), whose peaks are also broadened and smoothed in
ing from the classical to the quantum cases.

Despite the major broadening and the loss of characte
tic features ing(r ) andS(k), a detailed analysis of simula
tion snapshots shows that the major role of quantum eff
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is to superimpose a low-T fuzziness to particle configura
tions that are, to a large extent, equivalent to the class
ones. This is verified again by selecting configurations fr
either classical or quantum trajectories, and minimizing th
potential energy by quenched MD. The underlying minimu
energy geometries determined in this way are all qual
tively similar, with only small quantitative differences dis
cussed in Sec. VII. The radial distribution functions relati
to the minimum energy structures originated from quant
trajectories are indistinguishable from their classic
~quenched! counterparts and, in particular, they all displa
the characteristic features of glasses. Moreover, the ave
size and shape of type 1 microcrystals and type 2 elong
islands are the same in the classical and quantum cases

Unfortunately, the emergence of glassy features in the
dial distribution function of the quenched quantum config
rations cannot be used to determineTg because similar ge
ometries andg(r ) or S(k) are obtained by quenchin
configurations from temperatures aboveTg .

A different strategy for identifying structural signatures
Tg is suggested by the close relation between the glass t
sition and the phase space mobility of path centroids d
cussed in Sec. IV. We verify that, for quantum samples,
radial distribution function of centroids~a quantity that is
readily available in simulation, but not in experiments! un-
dergoes the characteristic structural changes associated
the glass transition at temperatures that correspond we

FIG. 10. Radial distribution functiong11(r ) for type 1 particles
computed at three different values of\. Full line, T52; dashed
line, T56.
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P. BALLONE AND B. MONTANARI PHYSICAL REVIEW E 65 066704
theTg estimated in Sec. IV for the same values of\2. These
changes, however, take place less suddenly than the ch
in the time dependence of the Lindemann ratio, and the
responding determination ofTg is affected by larger uncer
tainties. The analysis of the centroid radial distribution fun
tions, therefore, provides only a secondary diagnostic
that can be used to verify values ofTg determined with more
accurate methods.

VII. LOW-ENERGY LOCALIZED EXCITATIONS
AND TUNNELING CENTERS

Low-energy excitations represent one of the most cha
teristic properties of glasses, giving rise to equally univer
features in their specific heat. At temperatures of;10 K, a
characteristic peak in the temperature dependence of the
cific heat ~the so-called Boson peak! is attributed to soft
quasilocalized harmonic vibrations. At very low temper
tures (T;1 K) the specific heat of glasses displays
anomalous linear dependence on temperature, which is a
ciated to tunneling centers~two-level systems, TLS! @42#. It
is generally accepted that these two types of excitations
closely connected, and this point of view is the basis for
so-called soft potential model@43#, which provides a unified
description of both the low (;10 K) and very low~;1 K!
temperature universal properties of glasses.

Computer simulation has already been used to iden
TLS in amorphous samples produced by classical MD or M
@8–11#. For a variety of simple model potentials, the TL
found by simulation appear to be due to the oscillation
localized clusters~containing up to 20–50 particles! between
local energy minima that are almost degenerate and clos
space.

Despite these recent major advances in our understan
and visualization of TLS, several features of these centers
still unknown. A basic unsolved issue, for instance, conce
the relative role of quantum tunneling and thermal osci
tions in TLS.

In our simulations the evolution between the configu
tions in which our system is found is due both to thermal a
quantum fluctuations. The thermal fluctuations are reflec
mainly in the real-time evolution of the system, while qua
tum fluctuations give rise to structural changes among dif
ent imaginary-time slices at the same real time. Theref
we can decouple these two effects, to an extent, by com
ing configurations at different imaginary times~i.e., different
j ) but same real time, or different real time but same ima
nary time.

In our simulations, we identify tunneling centers b
quenching configurations separated by regular real~every
12t) or imaginary~at t̃ 50 andt̃ 5b/2) time intervals, along
trajectories at temperaturesT,Tg so that diffusion is negli-
gible. We discuss, in particular, the results for\251, ob-
tained by analyzing trajectories atT51 and T51.5. All
quenches produce energy minima that differ by at least a
details in the system configuration. In most cases, the dif
ence is due to a few (;10) isolated particles located at th
boundary between microcrystals of type 1 particles and t
2 elongated clusters. For different minima, the position
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each of these particles changes by an amount of the orde
s11, i.e., well outside the uncertainties due to the ene
minimization routine. However, the energy difference amo
these minima is very small (DE<0.01), and also the barrie
(EB;0.02–0.03) is two orders of magnitude lower than bo
the zero point energy of our particles at\251 and the~clas-
sical! thermal energy atTg . Therefore, we do not conside
these minima as belonging to tunneling centers, rather
associate all of them to a unique broad energy basin.

More interesting are pairs of energy minima that differ
the position of a localized cluster made of;15–20 particles.
These energy minima are still nearly degenerate, but the
tential energy barrier separating them is no longer neglig
(EB;0.1Tg). The majority of these pairs~see Fig. 11 for a
representative example! result repeatedly from quenches
configurations at the same real time and different imagin
times. We attribute the observed oscillations within the
pairs to quantum tunneling. A few additional pairs are fou
by quenching configurations separated by 12t in real time
but at equal imaginary time. We attribute the observed cro
ing between these pairs to thermal oscillations.

As expected, the identification of single events

FIG. 11. Upper panels: same portion of the system geome
corresponding to potential energy minima found by quenching c
figurations at the same MD time and separated byb/2 in imaginary
time. Bottom panel: superposition of the two panels above. T
original configurations have been selected on a trajectory atT51
and\251. Gray and black circles represent the particles of typ
and 2, respectively.
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PATH-INTEGRAL STUDY OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 066704
quantum-mechanical tunneling events or as thermal osc
tions is not completely unambiguous, since at anyT.0
quantum and thermal fluctuations are necessarily b
present. Therefore, even for the events that we identify
thermal, the isomerization does not take place exactly at
same real time for every imaginary time slice, and, co
versely, quantum events require a short but nonvanishing
time to take place. The distinction, therefore, relies mai
on the different time scale for the transformation in real a
imaginary time: thermal events occur for all the imagina
time slices within a few simulation steps, while quantu
tunneling is identified by structural differences among diff
ent imaginary-time slices that persist for long simulati
times. More extensive simulations are underway to provid
statistically significant classification of energy minima pa
for a wider range of temperatures and\2.

The localized clusters involved in either the quantum tu
neling or the thermal oscillations are similar in size, sha
and location~at microcrystal boundaries! to those supporting
the low-energy quasilocalized modes found by harmo
analysis for the classical samples~see Sec. III!. It is impor-
tant to remark, however, that the clusters identified by
simulation and by harmonic analysis arenot the same. We
verify this point by computing the harmonic frequencies a
eigenvectors for each of the minima found in the tunnel
analysis. We find that each of the harmonic spectra cont
at least a few low-energy quasilocalized modes~illustrated in
Fig. 12! completely analogous to those found in the class
case. However, in all cases, the particles that participate
nificantly in the tunneling process are not those showin
significant displacement in the quasilocalized harmo
modes. This difference underlines the~expected! major role
of anharmonic effects in the low-energy dynamics of o

FIG. 12. Particle displacement~represented by the arrows! for a
soft quasilocalized mode belonging to the vibrational spectrum
one of the minima in Fig. 11. Gray and black circles represent
particles of type 1 and 2, respectively.
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quantum systems, for which the zero point motion rises
energy of the system well above the potential energy mini
visited by the system at lowT.

In our case, the imaginary-time correlation function
@such asC( t̃ )5(1/N)^( i ur i( t̃ )2r i(0)u2&#, often used in PI
studies to characterize thermal and dynamical properties
quantum systems~see Ref.@20#!, do not provide new infor-
mation relevant for the glass transition. At all temperatur
for instance,C( t̃ ) displays the usual shape~see Fig. 13!
typical of systems with strong anharmonic effects or w
disorder induced localization. With increasingT, the ampli-
tudes of quantum fluctuations are, as expected, progressi
reduced. A plot ofC( t̃ 5 ib/2) as a function ofT ~see Fig.
14! displays a change in slope at a temperatureT;4.5 ~sig-
nificantly higher thanTg) which, for our systems, corre

f
e

FIG. 13. Imaginary-time correlation function for type 1~full
line! and type 2~dashed line! particles for a system atT51 and
corresponding to\251.

FIG. 14. Temperature dependence of the imaginary-time co

lation functionC( t̃ ) at imaginary timet̃ 5 ib/2 for type 1 ~filled
circles! and type 2~empty circles! particles in a system atT51 and
corresponding to\251. The lines refer to linear fits of the data fo
T<2, and have been added to provide a guide to the eye.
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P. BALLONE AND B. MONTANARI PHYSICAL REVIEW E 65 066704
sponds to the change from jumplike mobility to liquidlik
diffusion. More systematic studies using different potenti
are required to verify whether this correlation has a gen
validity.

VIII. SUMMARY AND CONCLUDING REMARKS

The glass transition in a quantum-mechanical LJ mixt
in two dimensions has been investigated by path-inte
MD simulations. All particles have mass equal to one, th
are assumed to be distinguishable, and the strength of q
tum effects is measured by the parameter\2 that, in our
study, takes the values 0~the classical limit!, 1/3, 1/2, and 1.
For all simulations,T is initially set to a high value, so tha
the system clearly is in the liquid state, and then progr
sively decreased until nearly zero. The analysis of confi
rations, diffusion coefficient, and thermal and structu
properties~i.e., radial distribution function and structure fa
tor! shows that the classical sample undergoes a glass
sition at Tg52. The determination ofTg for the quantum-
mechanical samples is far more difficult. The path-integ
scheme provides only imaginary-time correlation functio
whose analytic continuation to real time, required to comp
dynamical coefficient, is known to be severely ill cond
tioned @44#. Concerning the thermodynamic propertie
quantum delocalization and zero point energy prevent
appearance of the diagnostic features that, in classical
tems, identify the glass point. We rely instead on the anal
of phase space mobility for path centroids that, with decre
ing temperature, reveals three different regimes:~i! a fast and
continuous flow at highT; ~ii ! discrete jumps at intermediat
temperatures, and~iii ! localized oscillations at lowT. We
interpret these regimes in terms of connectivity of the pot
tial energy valleys visited by the system, and we assoc
the first regime with a liquid at equilibrium, the second wi
a sluggish liquid state, and the third with a solidlike gla
phase. The temperature separation of the three phase
pends only very weakly on the time scale of the observat
and therefore we identify the glass transition with the tran
tion between the last two regimes. The estimatedTg is 2,
2.25, 2.66, and 3.25 for\250, 1/3, 1/2, and 1, respectively
i.e., Tg increases monotonically with\. This trend is due to
the dominant anharmonic contributions of our poten
model, and could be different for other types of interparti
interactions. Moreover, the sensitivity ofTg to pressure sug
gests that the results could be quantitatively and even qu
tatively different by simulating the glass transition in th
NPT ensemble rather than in theNVT ensemble adopted in
our study. Nevertheless, the analysis of centroid trajecto
discussed above would still provide a method to determ
Tg .

The close connection between path centroid dynamics
glass transition is reflected in the fact that the radial dis
bution function and structure factorfor centroids~both easily
computed in simulations, but not measured in experime!
develop additional features atTg . For quantum systems
therefore, structural functions of the centroids play the sa
role asg(r ) andS(k) of particles in classical systems. Th
determination ofTg via the centroids structural feature
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however, is less accurate than the estimate via the ph
space mobility because structural changes develop m
gradually over a temperature interval of widthDT;0.5.

The identification ofTg allows us to relate the glass tran
sition to an excess in the potential energy contribution toCv
with respect to the corresponding kinetic energy part. T
anomaly can be interpreted in terms of the interplay betw
the kinetic energy cost and the potential energy gain due
the localization of the particles atTg . In this respect, quan
tum systems differ significantly from classical systems,
which the only two quantities competing at the glass po
are the potential energy and the entropy.

The particle dynamics in the glass phase has been in
tigated by identifying the different minima in the potenti
energy surface visited by the system atT,Tg . We observe
oscillations between degenerate pairs of minima, which
fer in the configuration of localized clusters made
;15–20 particles. The crossing between different mini
occurs predominantly as a function of imaginary time
fixed real~MD! time. We interpret these oscillations as qua
tum tunneling. In a few cases, we observe thermally a
vated oscillations between minima occurring nearly simu
neously for all theP imaginary time replicas of the system

The harmonic spectrum for each of the potential ene
minima identified from either classical or quantum trajec
ries contains a few (;5 –10) soft quasilocalized modes
which involve clusters of particles very similar to those gi
ing rise to the thermal or quantum oscillations describ
above. However, we verified that the clusters involved
these soft quasilocalized harmonic modes are different fr
those causing tunneling. This difference is somewhat un
pected since, in classical systems, soft quasilocalized mo
and thermal tunneling centers usually involve the sa
groups of particles. This different behavior can be und
stood in terms of the high zero point energy of our syste
~partly due to their high density!, which rises the energy o
the particles well beyond the potential energy minima a
amplifies anharmonic effects. Consequently, the harmo
analysis in the characterization of the lowT dynamics of
quantum systems becomes less relevant.

The identification of tunneling centers and the analysis
their quantum versus thermal character, together with the
termination of the glass transition temperatureTg for quan-
tum systems, are the major results of our study. We st
that, in order to amplify all the differences with respect to t
classical picture, we selected parameters correspondin
strong quantum effects. Further computations with differ
parameters and different potentials@45# are required to simu-
late more realistic models of glasses that can be comp
with experimental results.
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Phys. Rev. B63, 224108~2001!.

@28# The velocity of all particles is set to zero whenever t
2N-dimensional scalar product of velocities and forces b
comes negative.

@29# J. Cao and G.A. Voth, J. Chem. Phys.100, 5093~1994!.
@30# G.A. Voth, in Advances in Chemical Physics, edited by I. Pri-

gogine and S. A. Rice~Wiley, New York, 1996!, Vol. XCIII.
@31# See, for instance, R. Car and M. Parrinello, Phys. Rev. L

55, 2471~1985!.
@32# With a different choice of units, defined by\5e115s1151,

the three cases analyzed correspond toM53, 2, and 1. We
prefer the set of units specified in Sec. II because having
equal mass in all cases allows us to use the same unit of
and the same time step for all simulations.

@33# Our choice for the equivalent monocomponent system diff
from the more common relation:s25x1

2s11
2 12x1x2s12

2

1x2
2s22

2 , and corresponds to the definition given in D.N. Pe
era and P. Harrowell, Phys. Rev. E59, 5721~1999!.

@34# The participation ratiopr for the i th eigenmode of frequency
v i is defined as pr(v i)5$N@( j uBi

j (v i)u2#2%/( j uBi
j (v i)u4,

where the sum is over all particles, andBi
j is the displacement

of particle j for the i th harmonic mode. See, for instance, R
Bell, P. Dean, and D.C. Hibbins-Butler, J. Phys. C3, 2111
~1970!; W.M. Wisscher, J. Non-Cryst. Solids8-10, 477~1972!.

@35# More precisely, these modes are quasilocalized, since they
hybridized with a broad band of delocalized modes. See
discussion in Ref.@43# for further details.

@36# For recent application see: A. Proykova, S. Pisov, and R
Berry, J. Chem. Phys.115, 8583~2001!.

@37# C. Chakravarty, Phys. Rev. B59, 3590~1999!.
@38# For classical systemsd;10% is the well known limit of sta-

bility for crystals introduced by Lindemann. For quantum sy
tems the criticald is less well established, but somewhat larg
than in the classical case, see H. Xu, J.-P. Hansen, and
Chandler, Europhys. Lett.26, 419 ~1994!.

@39# The discrete jumps seen in the intermediate regime of
simulations cannot be attributed to the residual diffusion t
occurs even in glasses. A rough estimate of their real-ti
frequency, using values fors'2 Å e'100 K, andM'20
atomic mass units, shows that the corresponding diffusion
efficient (D'1028 cm2/s) is still in the ~viscous! liquid
range.
4-13



re
er

-

n

g

r.

ep.

e.,
ba,

ies,
ition
m

P. BALLONE AND B. MONTANARI PHYSICAL REVIEW E 65 066704
@40# The computational advantage of the Lindemann ratio with
spect to the diffusion coefficient is due to the additional av
aging over particle pairs that reduces fluctuations.

@41# In Fig. 10 we reportg11(r ) instead of the total radial distribu
tion function g(r )5x1

2g11(r )12x1x2g12(r )1x2
2g22(r ) be-

cause the structure ofg(r ) is complicated by the superpositio
of peaks originated by the three different componentsg11, g12,
andg22.

@42# P.W. Anderson, B.I. Halperin, and C.M. Varma, Philos. Ma
25, 1 ~1972!; W.A. Phillips, J. Low Temp. Phys.7, 351~1972!.

@43# V.G. Karpov, M.I. Klinger and F.N. Ignatiev, Zh. Eksp. Teo
Fiz 84, 760 ~1983! @Sov. Phys. JETP57, 439 ~1983!#; U.
06670
-
-

.

Buchenauet al., Phys. Rev. B43, 5039~1991!; V.L. Gurevich,
D.A. Parshin, J. Pelous, and H.R. Schober,ibid. 48, 16 318
~1993!.

@44# See, for instance, M. Jarrel, and J.E. Gubernatis, Phys. R
296, 133 ~1996!.

@45# A path-integral simulation for the prototype glass former, i.
SiO2 has been recently reported by Chr. Rickwardt, P. Niela
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